
Ch 7: Dummy (binary, indicator) variables
:Examples

Dummy variable are used to indicate the presence or
absence of a characteristic. For example, define

femalei   1 if obs i is female
0 otherwise

malei   1 if obs i is male
0 otherwise

or



marriedi   1 if obs i is married
0 otherwise

ONi   1 if obs i lives in Ont.
0 otherwise

Gi  
1 if xij ≤ xj

∗

0 otherwise



We can use dummy variables to allow responses
(regression coefficients) to vary across groups.

 For example, suppose we posit
wagei  0i  1educi  ui with 0i  0  0femalei

∴ wagei  0  0femalei  1educi  ui

 Notice
0  Ewage|female,educ − Ewage|not female,educ

 Ewage|female,educ − Ewage|male,educ

 Because femalei  malei  1, we could substitute out for the
female dummy or the intercept and get alternate and
equivalent parameterizations.



Alternative parameterizations

 Suppose that instead of
wagei  0  0femalei  1educi  ui

we ran
wagei  0  0malei  1educi  ui

Notice SpX is the same for both models.

 How are the coefficients in the two models above related?
Substitute into the second specification

wagei  0  01 − femalei  1educi  ui

 0  0 − 0femalei  1educi  ui

Therefore
0  0  0 0  −0 1  1



 We know that the OLS estimates of the two models satisfy
exactly the same restrictions as the population parameters.

 We know that a t-test of the null 0  0 would yield exactly
the same value as a t-test of the null 0  0

 A third and equivalent model is
wagei  0malei  0femalei  1educi  ui

Notice that although this specification doesn’t have an
explicit constant as an intercept, we still have  ∈ SpX.
Unfortunately, most regression programs won’t catch this
and won’t know how to calculate R2 for this specification.
For this reason, in practice we prefer a specification that
explicitly contains a constant as a regressor.



 Notice that we can’t include both dummy variables and the
intercept as regressors (dummy variable trap). This would
violate X has full column rank. The OLS estimator would no
longer be unique (but y would be)

 No reason to focus only on the intercept. We could posit
wagei  0i  1ieduci  ui

with
0i  0  0femalei

1i  1  1femalei

Exercise: What’s the relation between the OLS estimates of
this model and the OLS estimates obtained from separate
regression of wages on education for men and women?



Ex. 1 Test if men and women are paid the same wage vs
women are paid less.

 Estimate the model
wagei  0  0femalei  ui

 Test H0 : 0  0 vs. H1 : 0  0 using a t-test

Rks:
 This is the test for equality of two-sample means (assuming

constant equal variances) from 2nd yr stats
 Seems dumb as a test for discrimination but it gets

interpreted that way all the time!
 OLS always estimates something: In this case, it’s the BLP

of wages given gender. Is that what we want?



Ex 2. Test if women’s wages are lower because of
discrimination.

 This is a good example of how hard it is to translate
something we care about into a restriction on some
parameters!

 The conceptual experiment involves changing gender,
keeping everything else constant. To an excellent
approximation, this experiment isn’t feasible. (We do have
some studies of the effect of "gender blind" applications on
successfully landing the job)



 We need a model of what should determine wages, in the
absence of discrimination. Let’s say it is productivity and try
to capture it in the specification

yi  0  0femalei

 1educi  2esperi  3tenurei  ui

 Test H0 : 0  0 vs. H1 : 0  0 using a t-test

Rks:
 This seems better as a way of controlling for differences that

should matter, but it’s not perfect.

 We don’t have to worry about simultaneity bias–shocks that
lead to higher wages will not cause people to change their
sex. But we still can have correlation between regressors and
the disturbance.



 What’s not measured that could be correlated with the female
dummy?

 Type of job (or industry). Would putting in industry
dummies control for taste preferences (women prefer
jobs with certain characteristics such as flexibility or not
involving heavy physical labour)? Or would it amount
to "over controlling" (discrimination manifests itself in
creating some industries that are female ghettos)?

 Commitment to the labour force. Upon graduation,
salaries of new hires are indistinguishable by gender;
then a gap opens up. Why? Is it a difference in
investment on the job? Women are more likely to
interrupt their careers for family responsibilities. Is this
taste (biology) or response to market opportunities?



 Nonrandom sample. We only see women’s wages if
they work. Employment rates of women have been
lower, historically, than those of men. Does this matter?
Women who remain unmarried have higher wages. Is
this a reflection of higher commitment to work? Do they
get more on-the-job investment by displaying this
commitment? (Men who remain unmarried earn less!)

 Measurement error. Women miss more days at work.
Moretti (2005) estimates that days lost due to menstrual
pain alone can account for almost half of the wage gap in
Italian banks!

 Why focus on 0? Is the return to education, experience, or
tenure different for men and women?



:Multiple categories

 A dummy variable allows us to divide the sample into two
different groups. For example, femalei allows us to divide
the sample into females and "not" females.

 With two dummy variables, we can divide the sample into
four groups. For example, femalei,marriedi yields
1. female and married 2. female and not married
3. not female and married 4. not female and not married

 With m dummy variables, we have 2m different groups. If we
gave each group their own regression coefficients, we would
have 2m  K regression coefficients. This gets large very fast.
We often posit that some of the responses are constant across
groups as a way of imposing parsimony on the model.



 For example, we may specify
wagei  0i  1educi  2iesperi  ui

with
0i  0  0femalei ∗ marriedi 

1femalei ∗ simglei  2malei ∗ simglei

2i  2  3 ∗ esperi

This gives each of the four groups defined by
femalei,marriedi their own intercept, but a common linear
response to educi and a common quadratic response to esperi

 Q: What measures the difference in the expected wage of
married and unmarried women?

 Q: What measures the difference in the expected wage of
married and unmarried men?



Ex 7.6
lnwage  . 321  . 213marrmale − . 198marrfem

. 100 . 055 . 058

−. 110 simgfem  . 079 educ  . 027esper
. 056 . 007 . 005

−. 00054esper2  . 029tenure − . 00053tenure2

. 00011 . 007 . 00023

n  526 R2 . 461
Rk: marrmale  married ∗ male, etc educyrs schooling,
tenureyrs on the job



 What’s the coefficient on married male mean?

 What happens to your wage if you spend one more year on
the job?
(. 027 −. 000542 ∗ esper  1 . 029 −. 000532 ∗ tenur  1)



:Ordinal information

Suppose we have three credit ratings:
Poor  OK  Excellent
 We could construct a variable

CR  
0 if Poor
1 if OK
2 if Excellent

and regress
y  0  1CR  other factors

But this says that response of going from Poor to OK exactly
equals the response of going from OK to Excellent



 A better approach is to construct a family of dummy
variables for each category

CR1  1 if CR  1, 0 otherwise
CR2  1 if CR  2, 0 otherwise

and regress
y  0  1CR1  2CR2  other factors

We can always test if 21  2



 To save space, data sets often give what look like ordinal
values to data that aren’t ordinal. For example,

PROV  1 if NFLD
 2 if PEI


 10 if BC
It doesn’t makes ANY sense to run the regression

y  0  1PROV  other factors
You should construct a family of dummy variables in the
same way as described above for ordinal variables.



:Pooling many groups

 Suppose we have G groups in our sample, and for each of
them we posit the regression model

y  g,0  g,1x1   g,kxk  u g  1. .G

 We can create G − 1 dummy variables Dg to indicate
membership in group g  2. .G and then combine all the
regression models into a single one using

y  0  1x1   kxk 

∑
g2

G 
g,0Dg 


g,1x1Dg  


g,kxkDg  u

where x1Dg is a regressor formed by multiplying x1 by Dg,
etc



 The OLS estimates from the regression with all the data
allow us to recover the OLS estimates for each of the group
regressions.

 As long as the disturbances in each group have the same
variance, we can use our usual test statistics for the general
linear hypothesis to test

H0 : g,0  0, g,1  1, . . . , g,k  k g  1. .G

 Often, we will choose to impose some of the restrictions as
maintained hypotheses and test the remaining. For example,
maintaining g,2  2, . . . , g,k  k g  1. .G, test

H0 : g,0  0, g,1  1 g  1. .G
(Again, we already know how to impose the restrictions and
to test a linear hypothesis)



:Using dummy variables for functional form
We can construct piece-wise linear regression functions
using dummy variables.
 Suppose we believe the regression function is piecewise

linear

y   0  1x  u x ≤ x∗

0  1x  u x  x∗

 Create a dummy variable

D   0 x ≤ x∗

1 otherwise

 We can write the regression function compactly as
y  0  1x  2D  3Dx  u



where 2  0 − 0 and 3  1 − 1. Notice that the
function is linear in parameters, so we can use OLS.

 We can impose continuity at the "knot" x∗ by restricting the
parameters so that

0  1x∗  0  2  1  3x∗

 For more flexibility, we can generalize to having many knots,
x1
∗,x2

∗,xm
∗ 

 For more flexibility, we can replace piecewise linear by
piecewise cubic functions (cubic splines). This allows us to
have functions in C2 (continuous first and second
derivatives).



 We can generalize to the case of many regressors, and write
y  X11  fX2,2  u

where fX2,2 is a piecewise linear (or cubic) function.

 Suppose we an extreme version of the piecewise linear
representation is the true model

yi  xixi  ui

where xi ∈ , and Eui |X  0. But you estimate
yi  xi  ui

What’s E|X?
 Answer: E|X  ∑ i  ixi where  i  xi

2/∑ xi
2.

 If xi ∈ x1
∗,x2

∗,xM
∗  and pm denotes Pxi  xm

∗ , then we
can rewrite the expression above as
E|X  ∑m mxmpm



:Applications of the Frisch-Waugh Theorem with Dummy
variables

 Recall that if the model is
y  X11  X22  u

then the FW theorem says

1  X1

′ M2X1−1X1
′ M2y

where M2  I − X2X2
′ X2−1X2 is the matrix that gives the

orthogonal projection onto the space orthogonal to SpX2.

 This means that we can compute

1 from the regression of

M2y (or just y) on M2X1. (Using M2y as the dependent
variable yields exactly the same residual vector as the
regression of y on X1 and X2).



 A leading example occurs if X2   (a vector of ones, i.e. the
intercept). In this case, we see that the slope estimates,


1,

are obtained by regressing the dependent variable, expressed
as a deviation from its mean, on the explanatory variables,
also expressed as a deviation from mean, i.e. running the
regression

y  X11 
u

where y  y − y , and the columns of X1 are defined
accordingly.

 Many other examples can be constructed using dumming
variables. For example, suppose we write X2  D, where D
denotes a matrix of dummy variables. For convenience, let’s
parameterize so that  ∈ SpD, and write MD rather than
M2.



 Suppose D includes two dummy variables to indicate
membership in one of two mutually exclusive and exhaustive
groups, say, sex D1i  1 for females and D2i  1 for males).

D ′D 
D1
′

D2
′

D1 D2 
n1 0
0 n2

where n1  number of females in the sample, and n2 
number of males in the sample. With a bit of work, we see
that

D ′D−1D ′y 
y F

y M

where y F is the mean value of y for females, and y M is the
mean value for men.



 We conclude that y  MDy is the dependent variable
measured as a deviation from the gender mean, that is, the
component

y i  yi − D1i y F − D2i y M

The columns of the matrix MDX1 will have a similar
interpretation. So only the deviations from gender specific
means of the explanatory variables are used to estimate 1,
the response of y to X1.

 Exercise: Show that if group 1 has only one observation, then
running the regression with the two dummies gives the same
coefficient on X1 as just dropping that observation, and the
coefficient on D2 is the intercept from this "leave one out"
regression.



 In time series applications, we often want to take account of
"seasonal" effects (hour of the day, day of the week, month
of the year, quarter of the year). Suppose we have S
"seasons" and construct dummy variables Dsi  1 if obs i
occurs in season s (0 otherwise). Proceeding as above, we
see that

y i  yi − D1i y 1 − D2i y 2 − − DSi y S

where y s denotes the mean of y in season s. The columns of
the matrix MDX1 will have a similar interpretation. So only
the deviations from season specific means of the explanatory
variables are used to estimate 1



 (Panel Data Fixed Effects) Suppose we have T observations
(T ≥ 2) on the same person at different points in time. We
could construct individual specific dummies, i.e. Dmi  1 if
obs i pertains to person m  1. .M. (M can be very large).

 Proceeding as above, we see that we can write
y i  yi −∑

m

Dmi y m

so each person’s observations on the dependent variable are
expressed as deviations from that particular person’s mean
value.

 Similarly, the explanatory variables are written as deviations
from that particular person’s mean values. So it is only
variation within individuals explanatory variables over time
that can be used to estimate 1; variation across individuals
is ignored.



 So for example, in estimating the effect of marital status on
wages, only those people that change marital status affect the
estimated coefficient. Data on individuals who stay single or
stay married within the sample is ignored.

 Notice that with individual specific dummies we cannot
estimate the response to explanatory variables that DON’T
vary over time for individuals (sex, ethnicity, father’s
education, etc.).



:Dummy Dependent variable

 LOTS of interesting economic outcomes are discrete
(working/not working etc.). Suppose y is a dummy variable.

Ey|x  1  Py  1|x  0  Py  0|x
 Py  1|x

 In general, this must be a nonlinear regression function
because

0 ≤ Py  1|x ≤ 1

 Nonlinear models such as probit or tobit deal give the correct
support for Ey|x, but they are difficult to modify for other
problems, such as correlation between regressors and the
disturbance, or serial correlation in the disturbance.



 An approximation is to use the BLP rather than the
conditional expectation, which in this case is called the
Linear Probability Model (LPM)

y  0  1x1 kxk  u
Notice that it makes no sense to assume Vui|X  2 since
Vyi|X  Py  1|X − P2y  1|X, so we’ll need to
develop new estimators for the covariance matrix of


 and

new test statistics for the general linear hypothesis. We do
that in the next lecture.



:Sample Selection

 Often our data are not random draws, but we only get to see
the data if some condition is satisfied.

 For example, we may observe the explanatory variables for
the ith observation only if xi ∈ X∗ (eg. very high income
individuals may be missing from our sample of consumption
decisions). Fortunately, changes in the marginal distribution
of the regressors have no effect on our estimators and test
statistics under the CLM (but see the example above where
the regression coefficients vary with the regressor).

 If the sample we see depends on the properties of the
dependent variable, then things are very different. For
example, suppose we posit a wage regression for women of
the form



lnwage  0  1educ  2esper  u
But we only observe the wages of working women. Let y be
a dummy variable that equals 1 if the women works. Then
the regression function we estimate from our sample is

Elnwage|X,y  1  X  Eu|X,y  1
So there will be a bias.

 Examples of self-selection bias like this are numerous. See
Wooldridge for examples related to program evaluation.


